Distinguishing Local Demagnetization Contribution to the Magnetization Process in Multisegmented Nanowires

Author:

Marqués-Marchán JorgeORCID,Fernandez-Roldan Jose AngelORCID,Bran CristinaORCID,Puttock Robert,Barton Craig,Moreno Julián A.ORCID,Kosel Jürgen,Vazquez ManuelORCID,Kazakova OlgaORCID,Chubykalo-Fesenko OksanaORCID,Asenjo AgustinaORCID

Abstract

Cylindrical magnetic nanowires are promising materials that have the potential to be used in a wide range of applications. The versatility of these nanostructures is based on the tunability of their magnetic properties, which is achieved by appropriately selecting their composition and morphology. In addition, stochastic behavior has attracted attention in the development of neuromorphic devices relying on probabilistic magnetization switching. Here, we present a study of the magnetization reversal process in multisegmented CoNi/Cu nanowires. Nonstandard 2D magnetic maps, recorded under an in-plane magnetic field, produce datasets that correlate with magnetoresistance measurements and micromagnetic simulations. From this process, the contribution of the individual segments to the demagnetization process can be distinguished. The results show that the magnetization reversal in these nanowires does not occur through a single Barkhausen jump, but rather by multistep switching, as individual CoNi segments in the NW undergo a magnetization reversal. The existence of vortex states is confirmed by their footprint in the magnetoresistance and 2D MFM maps. In addition, the stochasticity of the magnetization reversal is analysed. On the one hand, we observe different switching fields among the segments due to a slight variation in geometrical parameters or magnetic anisotropy. On the other hand, the stochasticity is observed in a series of repetitions of the magnetization reversal processes for the same NW under the same conditions.

Funder

Spanish Ministry of Innovation and Science

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic Properties of Layered Ni/Cu Nanowires;Physics of Metals and Metallography;2023-08

2. Magnetic properties of layered Ni/Cu nanowires;Физика металлов и металловедение;2023-08-01

3. Dynamics of chiral domain walls under applied current in cylindrical magnetic nanowires;APL Materials;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3