Abstract
In this study, the feasibility and mechanism of Pb2+ and malachite green (MG) adsorption from wastewater using KMnO4-modified bamboo biochar (KBC) was evaluated. The KBC was characterized by SEM–EDS, XRD, FTIR and XPS. The adsorption results for Pb2+ conformed to pseudo-second-order kinetics and the Langmuir model theory. Unlike the case for Pb2+, the Freundlich model better described the adsorption behaviour of MG, indicating that adsorption occurred within multiple molecular layers. Both pseudo-first-order kinetics and pseudo-second-order kinetics fit the MG adsorption data well, indicating that physical adsorption was involved in the adsorption process. In addition, the maximum adsorption capacity for Pb2+/MG was 123.47/1111.11 mg·g−1, KBC had high adsorption capacities for Pb2+ and MG, and the mechanisms of Pb2+ adsorption were mineral precipitation, functional group complexation, and cation-π interactions, while the main mechanisms for MG adsorption were pore filling, π–π interactions, and functional group complexation. In this study, KMnO4-modified biochar was prepared and used as an efficient adsorbent, and showed good application prospects for treatment of wastewater containing MG and Pb2+.
Funder
The National Natural Science Foundation of China
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献