Urban Sound Auralization and Visualization Framework—Case Study at IHTApark

Author:

Llorca-Bofí JosepORCID,Dreier ChristianORCID,Heck JonasORCID,Vorländer MichaelORCID

Abstract

In the context of acoustic urban planning, the use of noise mappings is a worldwide well-established practice. Therefore, the noise levels in an urban environment are calculated based on models of the sound sources, models of the physical sound propagation effects and the position of the receivers in the area of interest. However, the noise mapping method is limited to sound levels in frequency bands due to missing temporal and spectral information of the sound signals. This, in turn, leads to missing information about the qualitative sound properties, as they can be evaluated in psychoacoustic parameters. Beyond the scope of the classical noise mapping, auralization and physically-based simulation of sound fields can be applied to urban scenarios in the context of urban soundscape analysis. By supporting the auralization technology with a visual counterpart of the urban space, a plausible virtual representation of a real environment can be achieved. The presented framework combines the possibilities of the open-source auralization tool Virtual Acoustics with 3D visualization. In order to enable studies with natural human response or for public communication of urban design projects, those virtual scenes can be either reproduced with immersive technologies—such head-mounted displays (HMD)—or using online video platforms and traditional playback devices. The paper presents an overview of what physical principles can already be simulated, which technological considerations need to be taken into account, and how to set up such environment for auralization and visualization of urban scenes. We present the framework by the case study of IHTApark.

Funder

Federal Ministry of Education and Research

Federal Ministry for Economic Affairs and Energy

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3