Estimation of Tool Wear and Surface Roughness Development Using Deep Learning and Sensors Fusion

Author:

Huang Pao-Ming,Lee Ching-HungORCID

Abstract

This paper proposes an estimation approach for tool wear and surface roughness using deep learning and sensor fusion. The one-dimensional convolutional neural network (1D-CNN) is utilized as the estimation model with X- and Y-coordinate vibration signals and sound signal fusion using sensor influence analysis. First, machining experiments with computer numerical control (CNC) parameters are designed using a uniform experimental design (UED) method to guarantee the variety of collected data. The vibration, sound, and spindle current signals are collected and labeled according to the machining parameters. To speed up the degree of tool wear, an accelerated experiment is designed, and the corresponding tool wear and surface roughness are measured. An influential sensor selection analysis is proposed to preserve the estimation accuracy and to minimize the number of sensors. After sensor selection analysis, the sensor signals with better estimation capability are selected and combined using the sensor fusion method. The proposed estimation system combined with sensor selection analysis performs well in terms of accuracy and computational effort. Finally, the proposed approach is applied for on-line monitoring of tool wear with an alarm, which demonstrates the effectiveness of our approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3