Comparison of the Magnesiothermic Reduction Behavior of Nb2O5 and Ti2Nb10O29

Author:

Hong Jiwon12,Hwang Seonmin12ORCID,Kang Namhyun1ORCID,Lee Dongwon2

Affiliation:

1. Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Busan 46241, Republic of Korea

2. Titanium Department, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Changwon 51508, Republic of Korea

Abstract

Nb-Ti binary alloys are widely employed as high value-added materials in the manufacture of super heat-resistant alloys, biomaterials, and superconductors. Therefore, there is significant interest to produce Nb-Ti master alloys in a cost-effective manner. In this study, we investigated the magnesiothermic reduction of Nb2O5 and Ti2Nb10O29 over the temperature range of 1073 to 1223 K and comparatively evaluated the reaction outcomes. The reduction product was composed of metal (Nb or Nb-Ti) particles and MgO, which covered the surface of the reduced metal particles. After the reduction reaction, the surface MgO phase was removed by pickling with hydrochloric acid (HCl) to finally recover the Nb metal or Nb-Ti alloy as a pure product. Scanning electron microscopy and X-ray diffraction analyses of the pure Nb metal and Nb-Ti alloy powders revealed that the reduction of both raw materials was successful at temperatures exceeding 1173 K. Reaction kinetics analysis revealed that the activation energy for the reduction of the mixed metal oxide (Ti2Nb10O29) is lower than that of Nb2O5 reduction. This is because of the different reaction mechanism behaviors during reduction and the different thermodynamic stabilities of the precursors.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3