Evolution of Cementite Substructure of Rails from Hypereutectoid Steel during Operation

Author:

Gromov Victor1ORCID,Ivanov Yurii2ORCID,Porfiriev Mikhail1,Shliarova Yulia1ORCID

Affiliation:

1. Department of Natural Sciences, Siberian State Industrial University, 654007 Novokuznetsk, Russia

2. Plasma Emission Electronics Laboratory, Institute of High Current Electronics SB RAS, 634055 Tomsk, Russia

Abstract

Transmission electron microscopy methods were used to analyze the cementite substructure in the head of special-purpose long rails of the DT400IK category, made of hypereutectoid steel, after long-term operation on an experimental track on the Russian Railways ring (the tonnage was 187 million tons). It is noted that the study of various aspects of cementite—its structure, morphology, chemical composition, crystal lattice defects—is relevant. The steel structure is represented by three morphological components at a distance of 10 mm from the sample surface: lamellar perlite, fractured and fragmented perlite. The volume fraction of lamellar perlite in the material is 65%. It is shown that after operation, the cementite plates are bent and separated by ferrite bridges. In the plates of ferrite and cementite, a dislocation substructure is formed, which is of a chaotically distributed and network type in ferrite and of an ordered type in cementite. An increased density of dislocations at the ferrite–cementite interfaces compared to the volume of ferrite plates was noted. Two possible mechanisms of deformation transformation of lamellar perlite grains are indicated: fracture of cementite plates and carbon pulling out from the lattice of the carbide phase. It is indicated that in the dissolution of cementite plates, the interfacial boundaries of “α-phase-cementite” play an important role. The removal of carbon from cementite plates occurs most intensively near defects in ferrite and cementite. The formed nanosized particles of tertiary cementite are unevenly distributed in the ferrite plates; most of them are observed at the locations of ferrite subgrains and interfacial boundaries. This results in non-uniform diffraction contrast in dark-field images of cementite plates. Nanosized particles of cementite can be taken out into the interlamellar space of pearlite colonies in the process of dislocation slip, or they are formed as a result of deformation decomposition, which is less likely. The fragmentation of ferrite and cementite plates is revealed and azimuthal components of total misorientation angles are estimated. The mechanisms of mass transfer of carbon atoms over interstitial sites, deformation vacancies, dislocation tubes, grain boundaries and fragments are considered. According to all the established patterns of the cementite substructure transformation, a comparison with the results for rails made of hypoeutectoid steel was performed.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3