Affiliation:
1. Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2. School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China
3. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract
While magnesium alloys have garnered attention for their lightweight properties across diverse applications, their susceptibility to corrosion presents a formidable challenge. Recent years have witnessed the emergence of machine learning (ML) as a formidable tool for predicting and augmenting material properties, notably corrosion resistance. This comprehensive review investigates the latest advancements and hurdles in utilizing ML techniques to investigate the corrosion behavior of magnesium alloys. This article delves into a spectrum of ML algorithms, encompassing artificial neural networks, support vector machines, and random forests, elucidating their roles in predicting corrosion rates, morphologies, and other corrosion-related characteristics in magnesium alloys. Furthermore, it underscores the pivotal challenges and opportunities within this field, such as data quality, model interpretability, and model transferability. Finally, it examines the potential of ML methods in the conception and enhancement of magnesium alloys endowed with superior corrosion resistance. This review aspires to offer valuable insights into harnessing ML’s potential for optimizing magnesium alloy designs with heightened corrosion resistance, a facet of paramount importance across diverse industries, including the automotive, aerospace, and biomedical sectors. By addressing the challenges inherent in using ML to forecast corrosion rates, including data limitations and the intricacies of corrosion mechanisms, ML stands poised to emerge as a potent instrument for advancing the development of corrosion-resistant materials.
Funder
the National Natural Science Foundation of China
he program of international Co-Creation Research on Global Diversity and Inclusion, Joining and Welding Research Institute, Osaka University, Japan
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献