Effect of Indium on the Properties of Mg-Zn-Based Alloys

Author:

Kowalski Kamil1ORCID,Kozlowski Mikolaj1ORCID,Lukaszkiewicz Natalia1,Kobus Mateusz1,Bielecki Jakub1,Jurczyk Mieczyslaw2ORCID

Affiliation:

1. Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznań, Poland

2. Department of Biomedical Engineering, Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana 4, 65-516 Zielona Gora, Poland

Abstract

In this study, indium was added to the binary Mg-Zn alloy to prepare an ultrafine-grained ternary Mg-Zn-In alloy with enhanced mechanical and corrosion properties. The bulk Mg-Zn-In alloy was synthesized through a combination of mechanical alloying and powder metallurgy techniques. The SPEX 8000 mixer mill was used to carry out the process under an argon atmosphere. The mixed powders were mechanically alloyed for 24 h. The mixture was uniaxially pressed at a compacting pressure of 600 MPa. The green compacts were sintered under a protective argon atmosphere at 300 °C for 1 h. The evolution of the microstructural, mechanical, and corrosion properties of Mg-based alloys was studied. X-ray diffraction and scanning electron microscopy were used to analyze the phase and microstructure. The changes in hardness and corrosion properties were also measured. Compared to binary Mg-Zn alloy samples modified with In, the samples exhibited a higher microhardness, which can be related to structure refinement and phase distribution. Based on the results of electrochemical testing, it was observed that the modified samples exhibited an improved level of corrosion resistance compared to the Mg-Zn binary alloy.

Funder

National Science Centre Poland

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3