Achieving High Plasticity and High Toughness of Low-Carbon Low-Alloy Steel through Intercritical Heat Treatment

Author:

Huang Long1,Liu Jia2,Deng Xiangtao3,Wang Zhaodong3

Affiliation:

1. Qingdao Premier Bearing Institute, Qingdao 266400, China

2. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China

3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

Abstract

Medium manganese steel has excellent comprehensive properties due to the TRIP effect of retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese elements through intercritical heat treatment. The influence of intercritical quenching temperature on the content and characteristics of the retained austenite, as well as the functional mechanism of the retained austenite during low-temperature impact, was studied. The results showed that the content of the retained austenite increased from 12% to 17%, and its distribution extended from grain boundaries to martensite lath boundaries, with increasing intercritical quenching temperature. The retained austenite on the grain boundaries was in blocks, and that on the martensitic lath boundaries formed slender domains. The stability of the retained austenite was achieved through the enrichment of C and Mn during intercritical heat treatment. The contribution of retained austenite to low-temperature mechanical properties was closely related to its stability. The retained austenite with poor stability underwent martensite transformation at low temperatures, and the high-carbon martensite was a brittle phase that became the nucleation site of cracks or the path of crack growth during impact. Stable retained austenite passivated crack tips and hindered crack propagation during impacts, which improved the impact performance of the steel.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3