Tensile and Fracture Characteristics of 304L Stainless Steel at Cryogenic Temperatures for Liquid Hydrogen Service

Author:

Kim Myung-Sung1ORCID,Lee Taehyun1,Park Jong-Won1ORCID,Kim Yongjin1

Affiliation:

1. Department of Reliability Assessment, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea

Abstract

As the urgency for carbon-neutral fuels grows in response to global warming and environmental pollution, liquid hydrogen, with its high energy density, emerges as a promising candidate. Stored at temperatures below 20 K, liquid hydrogen’s containment system requires materials resilient to such cryogenic temperatures. Austenitic stainless steel, including 304L grade, has been widely used due to its favorable properties. However, designing pressure vessels for these systems necessitates a deep understanding of fracture mechanics and accurate assessments of the material’s fracture toughness at cryogenic temperatures. The mechanical behavior at these temperatures differs significantly from that at room temperature, making testing at 20 K a complex procedure that requires stringent facilities. This study examines the tensile behavior and fracture toughness of 304L stainless steel at cryogenic temperatures, comparing and analyzing the characteristics observed at 20 K with those at room temperature. The phenomenon of discontinuous yield, with abrupt stress drops and stepwise deformation at low temperatures, has been identified, resulting in more complex stress–strain curves. Limitations were found in the calculation of the crack length during the assessment of fracture toughness in stainless steel under extremely low-temperature environments through the J-integral compliance method. To address these constraints, a comparative analysis was carried out to determine potential corrective measures.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference58 articles.

1. Current Research Trends and Perspectives on Materials-Based Hydrogen Storage Solutions: A Critical Review;Ren;Int. J. Hydrog. Energy,2017

2. Hydrogen as an Energy Carrier: Prospects and Challenges;Mazloomi;Renew. Sustain. Energy Rev.,2012

3. Review on the Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle;Li;Int. J. Hydrog. Energy,2019

4. Krishna, R., Titus, E., Salimian, M., Okhay, O., Rajendran, S., Rajkumar, A., Sousa, J.M.G., Ferreira, A.L.C., Campos, J., and Gracio, J. (2012). Hydrogen Storage, InTech.

5. Hydrogen Storage: Recent Improvements and Industrial Perspectives;Barthelemy;Int. J. Hydrog. Energy,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3