Fusion of UAV Hyperspectral Imaging and LiDAR for the Early Detection of EAB Stress in Ash and a New EAB Detection Index—NDVI(776,678)

Author:

Zhou Quan,Yu Linfeng,Zhang Xudong,Liu Yujie,Zhan Zhongyi,Ren LiliORCID,Luo Youqing

Abstract

Beijing’s One Million Mu Plain Afforestation Project involves planting large areas with the exotic North American tree species Fraxinus pennsylvanica Marsh (ash). As an exotic tree species, ash is very vulnerable to infestations by the emerald ash borer (EAB), a native Chinese wood borer pest. In the early stage of an EAB infestation, attacked trees show no obvious sign. Once the stand has reached the late damage stage, death occurs rapidly. Therefore, there is a need for efficient early detection methods of EAB stress over large areas. The combination of unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) with light detection and ranging (LiDAR) is a promising practical approach for monitoring insect disturbance. In this study, we identified the most useful narrow-band spectral HI data and 3D LiDAR data for the early detection of EAB stress in ash. UAV-HI data of different infested stages (healthy, light, moderate and severe) of EAB in the 400–1000 nm range were collected from ash canopies and were processed by Partial Least Squares–Variable Importance in Projection (PLS-VIP) to identify the maximally sensitive bands. Band R678 nm had the highest PLS-VIP scores and the most robust classification ability. We combined this band with band R776 nm to develop an innovative normalized difference vegetation index (NDVI(776,678)) to estimate EAB stress. LiDAR data were used to segment individual trees and supplement the HI data. The new NDVI(776,678) identified different stages of EAB stress, with a producer’s accuracy of 90% for healthy trees, 76.25% for light infestation, 58.33% for moderate infestation, and 100% for severe infestation, with an overall accuracy of 82.90% when combined with UAV-HI and LiDAR.

Funder

Major emergency science and Technology Project of National Forestry and Grassland Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3