Analysis of the Variability and Influencing Factors of Ice Thickness during the Ablation Period in Qinghai Lake Using the GPR Ice Monitoring System

Author:

Wei Qixin,Yao XiaojunORCID,Zhang Hongfang,Duan Hongyu,Jin Huian,Chen Jie,Cao Juan

Abstract

As a reliable indicator of regional climate change, the growth and decline of lake ice thickness affect the regional intra–annual heat and energy balance. In this study, a ground-penetrating radar (GPR) ice monitoring system, located approximately 1.7 km west of Bird Island in Qinghai Lake, in the territory of Qinghai Province and located in northwest China, was designed to carry out continuous fixed–point observations of local ice thickness and meteorological elements from 7 to 24 March 2021. The characteristics of continuous daily changes in ice thickness during the ablation period of Qinghai Lake and their relationship with meteorological elements were analyzed. The results showed that the average daily ice thickness of Qinghai Lake increased and then decreased during the observation period, with an average ice thickness of 42.83 cm, an average daily ice thickness range of 39.35~46.15 cm, and a growth rate of 0.54 cm/day during 8–13 March 2021, with an ice melting rate of −0.61 cm/day during 14–24 March 2021. The daily ice thickness variations were divided into two phases, which were relatively stable before dawn and followed a decreasing, increasing, and then decreasing trend during 8–13 March 2021 and a decreasing, increasing (for several hours), and then decreasing trend during 14–24 March 2021. There was a significant positive correlation (R = 0.745, p < 0.01) between near-surface air temperature and ice surface temperature during the observation period, but a significant negative correlation (R = −0.93, p < 0.05) between the average daily ice thickness and cumulative temperature of the ice surface. Temperature was the dominant factor affecting lake ice thickness, as compared to near-surface air humidity, wind speed, and illuminance. However, a sudden increase in wind speed have also played an important role at certain periods. A large number of cracks appeared on the ice surface on 26 March 2021, which, combined with the forces of wind speed, wind direction, and temperature, contributed to the rapid melt of the lake ice. This study filled the gap in situ measurement data on the continuous ice thickness variability during the ablation period in Qinghai Lake. It provided scientific support for the further study of lake ice on the Qinghai–Tibet Plateau (QTP).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference64 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3