TCSPANet: Two-Staged Contrastive Learning and Sub-Patch Attention Based Network for PolSAR Image Classification

Author:

Cui Yuanhao,Liu Fang,Liu Xu,Li LinglingORCID,Qian Xiaoxue

Abstract

Polarimetric synthetic aperture radar (PolSAR) image classification has achieved great progress, but there still exist some obstacles. On the one hand, a large amount of PolSAR data is captured. Nevertheless, most of them are not labeled with land cover categories, which cannot be fully utilized. On the other hand, annotating PolSAR images relies more on domain knowledge and manpower, which makes pixel-level annotation harder. To alleviate the above problems, by integrating contrastive learning and transformer, we propose a novel patch-level PolSAR image classification, i.e., two-staged contrastive learning and sub-patch attention based network (TCSPANet). Firstly, the two-staged contrastive learning based network (TCNet) is designed for learning the representation information of PolSAR images without supervision, and obtaining the discrimination and comparability for actual land covers. Then, resorting to transformer, we construct the sub-patch attention encoder (SPAE) for modelling the context within patch samples. For training the TCSPANet, two patch-level datasets are built up based on unsupervised and semi-supervised methods. When predicting, the classification algorithm, classifying or splitting, is put forward to realise non-overlapping and coarse-to-fine patch-level classification. The classification results of multi-PolSAR images with one trained model suggests that our proposed model is superior to the compared methods.

Funder

State Key Program of National Natural Science of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual-Branch PolSAR Image Classification Based On Graphmae And Local Feature Extraction;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Overview of deep learning algorithms for PolSAR image classification;Chinese Science Bulletin;2024-07-01

3. Polarimetry-Inspired Contrastive Learning for Class-Imbalanced PolSAR Image Classification;IEEE Transactions on Geoscience and Remote Sensing;2024

4. MLR-SimSiam: A Contrastive Pretraining Model Based on Polarimetric Jittering and Mutual Learning Regularizer for PolSAR Image Classification;IEEE Geoscience and Remote Sensing Letters;2024

5. $C^{2}N^{2}$: Complex-Valued Contourlet Neural Network;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3