Monitoring the Impact of Large Transport Infrastructure on Land Use and Environment Using Deep Learning and Satellite Imagery

Author:

Pavlovic MarkoORCID,Ilic SlobodanORCID,Antonic NenadORCID,Culibrk DubravkoORCID

Abstract

Large-scale infrastructure, such as China–Europe Railway Express (CER-Express), which connects countries and regions across Asia and Europe, has a potentially profound effect on land use, as evidenced by changes in land cover along the railway. To ensure sustainable development of such infrastructure and appropriate land administration, effective ways to monitor and assess its impact need to be developed. Remote sensing based on publicly available satellite imagery represents an obvious choice. In the study presented here, we employ a state-of-the-art deep-learning-based approach to automatically detect different types of land cover based on multispectral Sentinel-2 imagery. We then use these data to conduct and present a study of the changes in land use in two geopolitically diverse regions of interest (in Serbia and China and with and without CER-Express infrastructure) for the period of the last three years. Our results show that the standard image-patch-based land cover classification approaches suffer a significant drop in performance in our target scenario in which each pixel needs to be assigned a cove class, but still, validate the applicability of the proposed approach as a remote sensing tool to support the sustainable development of large infrastructure. We discuss the technical limitations of the proposed approach in detail and potential ways in which it can be improved.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3