Maize Yield Estimation in Intercropped Smallholder Fields Using Satellite Data in Southern Malawi

Author:

Li ChengxiuORCID,Chimimba Ellasy Gulule,Kambombe Oscar,Brown Luke A.ORCID,Chibarabada Tendai Polite,Lu Yang,Anghileri DanielaORCID,Ngongondo Cosmo,Sheffield Justin,Dash Jadunandan

Abstract

Satellite data provide high potential for estimating crop yield, which is crucial to understanding determinants of yield gaps and therefore improving food production, particularly in sub-Saharan Africa (SSA) regions. However, accurate assessment of crop yield and its spatial variation is challenging in SSA because of small field sizes, widespread intercropping practices, and inadequate field observations. This study aimed to firstly evaluate the potential of satellite data in estimating maize yield in intercropped smallholder fields and secondly assess how factors such as satellite data spatial and temporal resolution, within-field variability, field size, harvest index and intercropping practices affect model performance. Having collected in situ data (field size, yield, intercrops occurrence, harvest index, and leaf area index), statistical models were developed to predict yield from multisource satellite data (i.e., Sentinel-2 and PlanetScope). Model accuracy and residuals were assessed against the above factors. Among 150 investigated fields, our study found that nearly half were intercropped with legumes, with an average plot size of 0.17 ha. Despite mixed pixels resulting from intercrops, the model based on the Sentinel-2 red-edge vegetation index (VI) could estimate maize yield with moderate accuracy (R2 = 0.51, nRMSE = 19.95%), while higher spatial resolution satellite data (e.g., PlanetScope 3 m) only showed a marginal improvement in performance (R2 = 0.52, nRMSE = 19.95%). Seasonal peak VI values provided better accuracy than seasonal mean/median VI, suggesting peak VI values may capture the signal of the dominant upper maize foliage layer and may be less impacted by understory intercrop effects. Still, intercropping practice reduces model accuracy, as the model residuals are lower in fields with pure maize (1 t/ha) compared to intercropped fields (1.3 t/ha). This study provides a reference for operational maize yield estimation in intercropped smallholder fields, using free satellite data in Southern Malawi. It also highlights the difficulties of estimating yield in intercropped fields using satellite imagery, and stresses the importance of sufficient satellite observations for monitoring intercropping practices in SSA.

Funder

UK Research and Innovation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3