Thermoelectric Freeze-Casting of Biopolymer Blends: Fabrication and Characterization of Large-Size Scaffolds for Nerve Tissue Engineering Applications

Author:

Monfette Vincent1,Choinière William1,Godbout-Lavoie Catherine1,Pelletier Samuel2,Langelier Ève3ORCID,Lauzon Marc-Antoine14

Affiliation:

1. Department of Chemical Engineering and Biotechnological of Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

2. Department of Electrical Engineering and Informatics Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

3. Department of Mechanical Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

4. Research Center on Aging, CIUSSS de l’ESTRIE-CHUS, Sherbrooke, QC J1H 4C4, Canada

Abstract

Peripheral nerve injuries (PNIs) are detrimental to the quality of life of affected individuals. Patients are often left with life-long ailments that affect them physically and psychologically. Autologous nerve transplant is still the gold standard treatment for PNIs despite limited donor site and partial recovery of nerve functions. Nerve guidance conduits are used as a nerve graft substitute and are efficient for the repair of small nerve gaps but require further improvement for repairs exceeding 30 mm. Freeze-casting is an interesting fabrication method for the conception of scaffolds meant for nerve tissue engineering since the microstructure obtained comprises highly aligned micro-channels. The present work focuses on the fabrication and characterization of large scaffolds (35 mm length, 5 mm diameter) made of collagen/chitosan blends by freeze-casting via thermoelectric effect instead of traditional freezing solvents. As a freeze-casting microstructure reference, scaffolds made from pure collagen were used for comparison. Scaffolds were covalently crosslinked for better performance under load and laminins were further added to enhance cell interactions. Microstructural features of lamellar pores display an average aspect ratio of 0.67 ± 0.2 for all compositions. Longitudinally aligned micro-channels are reported as well as enhanced mechanical properties in traction under physiological-like conditions (37 °C, pH = 7.4) resulting from crosslinking treatment. Cell viability assays using a rat Schwann cell line derived from sciatic nerve (S16) indicate that scaffold cytocompatibility is similar between scaffolds made from collagen only and scaffolds made from collagen/chitosan blend with high collagen content. These results confirm that freeze-casting via thermoelectric effect is a reliable manufacturing strategy for the fabrication of biopolymer scaffolds for future peripheral nerve repair applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3