Circularly Polarized Textile Sensors for Microwave-Based Smart Bra Monitoring System

Author:

Elsheakh Dalia N.12ORCID,Elgendy Yasmine K.3,Elsayed Mennatullah E.3ORCID,Eldamak Angie R.3ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering and Technology, Badr University in Cairo, Badr City 11829, Egypt

2. Microstrip Department, Electronics Research Institute, Nozha, Cairo 11843, Egypt

3. Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

Abstract

This paper presents a conformal and biodegradable circularly polarized microwave sensor (CPMS) that can be utilized in several medical applications. The proposed textile sensor can be implemented in a Smart Bra system for breast cancer detection (BCD) and a wireless body area network (WBAN). The proposed sensor is composed of a wideband circularly polarized (CP) textile-based monopole antenna with an overall size of 33.5 × 33.5 mm2 (0.2 λo × 0.2 λo) and CPW feed line. The radiating element and ground are fabricated using silver conductive fabric and stitched to a cotton substrate of thickness 2 mm. In the proposed design, a slot is etched in the radiating element to extend bandwidth from 1.8 to 8 GHz at |S11| ≤ −10 dB. It realizes a circularly polarized output with AR ≤ 3 dB operation band from 1.8 to 4 GHz and an average gain of 6 dBi. The proposed CPMS’s performance is studied both off-body (air) and on-body in proximity to breast models with and without tumors using near-field microwave imaging. Moreover, the axial ratio is recorded as a feature for a circularly polarized antenna and adds another degree of freedom for cancer detection and data analysis. It assists in detecting tumors in the breast by analyzing the magnitude of the electric field components in vertical and horizontal directions. Finally, the radiation properties are recorded, as well as the specific absorption rate (SAR), to ensure safe operation. The proposed CPMS covers a bandwidth of 1.8–8 GHz with SAR values following the 1 g and 10 g standards. The proposed work demonstrates the feasibility of using textile antennas in wearables, microwave sensing systems, and wireless body area networks (WBANs).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3