State Recognition of Multi-Nozzle Electrospinning Based on Image Processing

Author:

Gao Weiqi12,Jiang Jiaxin3,Wang Xiang3ORCID,Li Wenwang3,Zheng Gaofeng12ORCID

Affiliation:

1. Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China

2. Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China

3. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China

Abstract

The online monitoring of a multi-jet electrospinning process is critical to the achievement of stable mass electrospinning for industrial applications. In this study, the construction of an ejection state recognition system of a multi-jet electrospinning process based on image processing is reported. The ejection behaviors regarding multi-nozzle electrospinning were recorded by CMOS industrial cameras in real time. The characteristic information regarding the multi-jet cone tip was obtained by processing the images regarding Roberts operator edge detection, Hough transform line detection, and mask histogram analysis. The jet anomalies of the hanging droplets in the nozzle outlet area could be obtained and identified by the vision. The identification accuracy towards the target hanging droplets was more than 85%. This work reports the intelligent control of large-scale multi-nozzle electrospinning equipment.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Fujian Province

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3