Influence of Structural Parameters on the Performance of an Asymmetric Rhombus Micromixer with Baffles

Author:

Nai Jiacheng1,Zhang Feng1ORCID,Dong Peng2,Fu Ting3,Ge Anle4,Xu Shuang3,Pan Yanqiao3ORCID

Affiliation:

1. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

2. Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

3. Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China

4. Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

Abstract

As an important part of lab-on-a-chip and micro-total analysis systems, micromixers have a wide range of applications in biochemical analysis, pharmaceutical preparation and material synthesis. In the work, a novel rhombic separation and recombination micromixer with baffles was presented to further improve the performance of the micromixer and study the effect of multiple structural parameters on mixing. The effects of the rhombic angle, the width ratio of sub-channel and the size and relative positions of baffles on the mixing index were studied numerically at different Reynolds numbers (Re), and the sensitivity of the mixing index to various structures was also investigated. The results showed that the mixing index increased with the subchannel’s width ratio and slowly decreased after reaching the peak value in the range of Re from 0.1 to 60. The maximum mixing index appeared when the width ratio was 6.5. The pressure drops in the microchannel were proportional to the width ratio. The mixing effect can be further improved by adding baffle structure to asymmetric rhombus micromixer, and more baffle quantity and larger baffle height were beneficial to the improvement of the mixing index. The research results can provide reference and new ideas for the structure design of passive micromixers.

Funder

National Natural Science Foundation of China

Hubei Provincial Department of Education Science Research Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3