Acoustic Sensing Performance Investigation Based on Grooves Etched in the Ring Resonators

Author:

Han Yuan1,Zheng Yongqiu1,Li Nan1,Luo Yifan1,Xue Chenyang1,Bai Jiandong1ORCID,Chen Jiamin1

Affiliation:

1. Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China

Abstract

Acoustic detection based on optical technology has moved in the direction of high sensitivity and resolution. In this study, an optical waveguide acoustic sensor based on a ring resonator with the evanescent field is proposed. Grooves are introduced into the ring resonators as a direct sensitive structure to excite the evanescent field. A series of resonators with diverse grooves are fabricated for a comparative analysis of acoustic performance. The acoustic parameters of bandwidth, sensitivity, and signal-to-noise ratio (SNR) vary with different grooves indicated by the Q-factor. The results show that the ring resonators with variable-sized grooves exhibit excellent capability of acoustics detection. A maximum frequency of 160 kHz and a high sensitivity of 60.075 mV/Pa is achieved, with the minimum detectable sound pressure being 131.34 µPa/Hz1/2. Furthermore, the resonators with high Q-factors represent a remarkable sound resolution reaching 0.2 Hz. This work is of great significance for optimizing acoustic sensors and broadening the application range.

Funder

The National Natural Science Foundation of China

the Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3