Self-Powered Triboelectric Nanogenerator for Security Applications

Author:

Munirathinam Prabavathi1ORCID,Chandrasekhar Arunkumar1ORCID

Affiliation:

1. Nanosensors and Nanoenergy Lab, Sensor Systems Lab, Department of Sensors and Biomedical Technology, School of Electronic Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Abstract

Valuable jewels, documents, and files left in hotel rooms by guests can be stolen at any time by an unauthorized person. This could have a serious psychological and economic impact on the guests. The house/hotel owners should make efforts to prevent theft from occurring. In this study, a self-powered sliding-mode triboelectric nanogenerator (TENG) is used as a sensor on a drawer. It is fixed to the side of the drawer and works in the lateral sliding mode. The electricity generated by the device during the push–pull action of the draw is ~125 V and F~12.5 µA. An analysis of the electrical performance was carried out using PET, paper, and nitrile as sliding materials. The electrical output from the device is used to notify the guest or hotel owner of any theft by an unidentified individual via Arduino and node MCU devices. Finally, this device can be helpful at night and can be extended using different materials.

Funder

Vellore Institute of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3