Theoretical and Experimental Study of Friction Characteristics of Textured Journal Bearing

Author:

Wang Hongtao1ORCID,Bie Wenbo2,Zhang Shaolin1,Liu Tengfei1

Affiliation:

1. College of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Henan Province Engineering Research Center of Ultrasonic Technology Application, Pingdingshan University, Pingdingshan 467000, China

Abstract

The proposed lubrication theory of textured journal bearing is a major innovation in the study of the tribological properties of surface morphology. When it comes to the study of surface topography, it is essential to consider the effect of surface roughness when analyzing the characteristics of journal bearing. In this paper, a Reynolds equation containing longitudinal roughness is established for journal bearing and solved by the finite difference principle to obtain the bearing load and friction characteristics. Subsequently, a combination of laser etching and ultrasonic vibration milling processes was used to prepare 5 µm, 20 µm, and 40 µm bearing friction subsets with square micro-texture surfaces. The analysis of the results shows that the surface roughness distributed in the non-texture region can substantially increase the oil film pressure. When the roughness profile and the surface weave work together, the presence of a surface texture with an optimum depth of 5 µm within a roughness range of less than 1.6 µm can improve the load-bearing characteristics by a maximum of 43%. In the study of the preparation of textured bearing friction substrate, it was found that laser etching can ablate the surface of the friction substrate to a depth greater than 20 µm with the ideal effect, while the surface texturing to a depth of 5 µm is more suitable using an ultrasonic vibration processing process. In the simplified journal bearing operating condition, the frictional wear test shows that if the effect of roughness is considered, the frictional force of the depth of 20 µm and 40 µm is significantly reduced and changes less with increasing load, while the frictional force of the textured frictional pair with a depth of 5 µm is improved but significantly affected by the load carrying capacity. Therefore, when the difference between the roughness profile and the depth of the texture is of a small order of magnitude, it indicates that the effect caused by the roughness factor is not negligible.

Funder

Key R&D and Promotion Program

PhD Research Start-up Fund Project of the Pingdingshan University of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3