Surface Cleanliness Maintenance with Laminar Flow Based on the Characteristics of Laser-Induced Sputtering Particles in High-Power Laser Systems

Author:

Peng Ge1,Gao Qiang12,Dong Zhe1,Liang Lingxi3,Chen Jiaxuan1ORCID,Zhu Chengyu3,Zhang Peng1,Lu Lihua1ORCID

Affiliation:

1. Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China

2. Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401135, China

3. National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, West Dazhi Street, Harbin 150080, China

Abstract

In high-power laser systems, the primary cause of contamination of optical components and degradation of spatial cleanliness is laser-induced sputtering of particles. To mitigate this problem, laminar flow is frequently utilized to control the direction and transport of these particles. This study characterizes the properties of laser-induced sputtering particles, including their flying trend, diameter range, and velocity distribution at varying time intervals. A time-resolved imaging method was employed to damage the rear surface of fused silica using a 355 nm Nd: YAG pump laser. The efficacy of laminar flow in controlling these particles was then assessed, with a particular focus on the influence of laminar flow direction, laminar flow velocity, particle flight height, and particle diameter. Our results indicate that the optimal laminar flow velocity for preventing particle invasion is highly dependent on the maximum particle attenuation distance (or safety distance), which can vary by up to two orders of magnitude. Furthermore, a laminar flow velocity of 0.5 m/s can effectively prevent particle sedimentation. Future research will aim to optimize laminar flow systems based on these findings to achieve high surface cleanliness in high-power laser systems with minimal energy consumption.

Funder

National Natural Science Foundation of China

NSAF Joint Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3