The Size-Dependent Photonic Characteristics of Colloidal-Quantum-Dot-Enhanced Micro-LEDs

Author:

Liang Kai-Ling12,Kuo Wei-Hung1,Lin Chien-Chung13ORCID,Fang Yen-Hsiang1

Affiliation:

1. Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan

2. Graduate Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

3. Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan

Abstract

Colloidal CdSe/ZnS quantum dots (QD) enhanced micro-LEDs with sizes varying from 10 to 100 μm were fabricated and measured. The direct photolithography of quantum-dot-contained photoresists can place this color conversion layer on the top of an InGaN-based micro-LED and have a high throughput and semiconductor-grade precision. Both the uncoated and coated devices were characterized, and we determined that much higher brightness of a QD-enhanced micro-LED under the same current level was observed when compared to its AlGaInP counterpart. The color stability across the device sizes and injection currents were also examined. QD LEDs show low redshift of emission wavelength, which was recorded within 1 nm in some devices, with increasing current density from 1 to 300 A/cm2. On the other hand, the light conversion efficiency (LCE) of QD-enhanced micro-LEDs was detected to decrease under the high current density or when the device is small. The angular intensities of QD-enhanced micro-LEDs were measured and compared with blue devices. With the help of the black matrix and omnidirectional light emission of colloidal QD, we observed that the angular intensities of the red and blue colors are close to Lambertian distribution, which can lead to a low color shift in all angles. From our study, the QD-enhanced micro-LEDs can effectively increase the brightness, the color stability, and the angular color match, and thus play a promising role in future micro-display technology.

Funder

Industrial Technology Research Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3