Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries

Author:

Nguyen Thang Phan1ORCID,Kim Il Tae1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea

Abstract

Sodium-ion batteries (SIBs) are potential replacements for lithium-ion batteries owing to their comparable energy density and the abundance of sodium. However, the low potential and low stability of their cathode materials have prevented their commercialization. Prussian blue analogs are ideal cathode materials for SIBs owing to the numerous diffusion channels in their 3D structure and their high potential vs. Na/Na+. In this study, we fabricated various Fe-V-incorporated hexacyanoferrates, which are Prussian blue analogs, via a one-step synthesis. These compounds changed their colors from blue to green to yellow with increasing amounts of incorporated V ions. The X-ray photoelectron spectroscopy spectrum revealed that V3+ was oxidized to V4+ in the cubic Prussian blue structure, which enhanced the electrochemical stability and increased the voltage platform. The vanadium ferrocyanide Prussian blue (VFPB1) electrode, which contains V4+ and Fe2+ in the Prussian blue structure, showed Na insertion/extraction potential of 3.26/3.65 V vs. Na/Na+. The cycling test revealed a stable capacity of ~70 mAh g−1 at a rate of 50 mA g−1 and a capacity retention of 82.5% after 100 cycles. We believe that this Fe-V-incorporated Prussian green cathode material is a promising candidate for stable and high-voltage cathodes for SIBs.

Funder

National Research Foundation of Korea

Korea Basic Science Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3