Research on Lower Limb Step Speed Recognition Method Based on Electromyography

Author:

Zhang Peng1ORCID,Wu Pengcheng2,Wang Wendong3

Affiliation:

1. Engineering Training Centre, Northwestern Polytechnical University, Xi’an 710000, China

2. College of Automation, Northwestern Polytechnical University, Xi’an 710000, China

3. College of Mechanical and Electrical Engineering, Northwestern Polytechnical University, Xi’an 710000, China

Abstract

Wearable exoskeletons play an important role in people’s lives, such as helping stroke and amputation patients to carry out rehabilitation training and so on. How to make the exoskeleton accurately judge the human action intention is the basic requirement to ensure that it can complete the corresponding task. Traditional exoskeleton control signals include pressure values, joint angles and acceleration values, which can only reflect the current motion information of the human lower limbs and cannot be used to predict motion. The electromyography (EMG) signal always occurs before a certain movement; it can be used to predict the target’s gait speed and movement as the input signal. In this study, the generalization ability of a BP neural network and the timing property of a hidden Markov chain are used to properly fuse the two, and are finally used in the research of this paper. Experiments show that, using the same training samples, the recognition accuracy of the three-layer BP neural network is only 91%, while the recognition accuracy of the fusion discriminant model proposed in this paper can reach 95.1%. The results show that the fusion of BP neural network and hidden Markov chain has a strong solving ability for the task of wearable exoskeleton recognition of target step speed.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangdong Science and Technology Innovation Strategy Special Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3