Improved Intra-Pixel Sensitivity Characterization Based on Diffusion and Coupling Model for Infrared Focal Plane Array Photodetector

Author:

Zhong Li,Li Xiaoyan,Zhu Min,Hu Zhuoyue,Chen FanshengORCID

Abstract

The high-precision characterization of the intra-pixel sensitivity (IPS) for infrared focal plane array (FPA) photodetector is of great significance to high-precision photometry and astrometry in astronomy, as well as target tracking in under-sampled remote sensing images. The discrete sub-pixel response (DSPR) model and fill factor model have been used for IPS characterization in some studies. However, these models are incomplete and lack the description of physical process of charge diffusion and capacitance coupling, leading to the inaccuracy of IPS characterization. In this paper, we propose an improved IPS characterization method based on the diffusion and coupling physical (DCP) model for infrared FPA photodetector, which considering the processes of generation and collection of the charge, can improve the accuracy of IPS characterization. The IPS model can be obtained by convolving the ideal rectangular response function with the charge diffusion function and the capacitive coupling function. Then, the IPS model is convolved with the beam spot profile to obtain the beam spot scanning response model. Finally, we calculate the parameters of IPS by fitting the beam spot scanning response map with the proposed DCP model based on the Trust-Region-Reflective algorithm. Simulated results show that when using a 3 μm beam spot to scan, the error of IPS characterization based on DCP model is 0.63%, which is better than that of DSPR model’s 3.70%. Experimental results show that the fitting error of the beam spot scan response model based on DCP model is 4.29%, which is better than that of DSPR model’s 8.31%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3