Efficient Separation and Recovery of Petroleum Hydrocarbon from Oily Sludge by a Combination of Adsorption and Demulsification

Author:

Yao Mingzhu,Ma Yun,Liu Lu,Qin Chengrong,Huang Haibo,Zhang Zhiwei,Liang ChenORCID,Yao ShuangquanORCID

Abstract

The treatment of oily sludge (OS) can not only effectively solve environmental pollution but also contribute to the efficient use of energy. In this study, the separation effect of OS was analyzed through sodium lignosulfonate (SL)-assisted sodium persulfate (S/D) treatment. The effects of SL concentration, pH, temperature, solid–liquid ratio, revolving speed, and time on SL adsorption solubilization were analyzed. The effects of sodium persulfate dosage, demulsification temperature, and demulsification time on sodium persulfate oxidative demulsification were analyzed. The oil removal efficiency was as high as 91.28%. The results showed that the sediment was uniformly and finely distributed in the S/D-treated OS. The contact angle of the sediment surface was 40°, and the initial apparent viscosity of the OS was 56 Pa·s. First, the saturated hydrocarbons and aromatic hydrocarbons on the sediment surface were adsorbed by the monolayer adsorption on SL. Stubborn, cohesive oil agglomerates were dissociated. Sulfate radical anion (SO4−·) with a high oxidation potential, was formed from sodium persulfate. The oxidation reaction occurred between SO4−· and polycyclic aromatic hydrocarbons. A good three-phase separation effect was attained. The oil recovery reached 89.65%. This provides theoretical support for the efficient clean separation of oily sludge.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3