Delivery of mGluR5 siRNAs by Iron Oxide Nanocages by Alternating Magnetic Fields for Blocking Proliferation of Metastatic Osteosarcoma Cells

Author:

Kang Min A,Rao Pooja P.ORCID,Matsui Hiroshi,Mahajan Shahana S.ORCID

Abstract

Although osteosarcoma is the most common primary malignant bone tumor, chemotherapeutic drugs and treatment have failed to increase the five-year survival rate over the last three decades. We previously demonstrated that type 5 metabotropic glutamate receptor, mGluR5, is required to proliferate metastatic osteosarcoma cells. In this work, we delivered mGluR5 siRNAs in vitro using superparamagnetic iron oxide nanocages (IO-nanocages) as delivery vehicles and applied alternating magnetic fields (AMFs) to improve mGluR5 siRNAs release. We observed functional outcomes when mGluR5 expression is silenced in human and mouse osteosarcoma cell lines. The results elucidated that the mGluR5 siRNAs were successfully delivered by IO-nanocages and their release was enhanced by AMFs, leading to mGluR5 silencing. Moreover, we observed that the proliferation of both human and mouse osteosarcoma cells decreased significantly when mGluR5 expression was silenced in the cells. This novel magnetic siRNA delivery methodology was capable of silencing mGluR5 expression significantly in osteosarcoma cell lines under the AMFs, and our data suggested that this method can be further used in future clinical applications in cancer therapy.

Funder

National Institute of General Medical Sciences

NIH

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference58 articles.

1. Osteosarcoma: A review of diagnosis, management, and treatment strategies;Geller;Clin. Adv. Hematol. Oncol.,2010

2. Osteosarcoma of jaws: Challenges in diagnosis;Shah;J. Oral Maxillofac. Pathol.,2020

3. Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies

4. Drug Resistance in Cancer: An Overview

5. Effectiveness of Type I interferons in the treatment of multidrug resistant osteosarcoma cells

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3