Abstract
Rho5, the yeast homolog of human Rac1, is a small GTPase which regulates the cell response to nutrient and oxidative stress by inducing mitophagy and apoptosis. It is activated by a dimeric GEF composed of the subunits Dck1 and Lmo1. Upon stress, all three proteins rapidly translocate from the cell surface (Rho5) and a diffuse cytosolic distribution (Dck1 and Lmo1) to mitochondria, with translocation of the GTPase depending on both GEF subunits. We here show that the latter associate with mitochondria independent from each other and from Rho5. The trapping of Dck1-GFP or GFP-Lmo1 to the mitochondrial surface by a specific nanobody fused to the transmembrane domain (TMD) of Fis1 results in a loss of function, mimicking the phenotypes of the respective gene deletions, dck1 or lmo1. Direct fusion of Rho5 to Fis1TMD, i.e., permanent attachment to the mitochondria, also mimics the phenotypes of an rho5 deletion. Together, these data suggest that the GTPase needs to be activated at the plasma membrane prior to its translocation in order to fulfill its function in the oxidative stress response. This notion is substantiated by the observation that strains carrying fusions of Rho5 to the cell wall integrity sensor Mid2, confining the GTPase to the plasma membrane, retained their function. We propose a model in which Rho5 activated at the plasma membrane represses the oxidative stress response under standard growth conditions. This repression is relieved upon its GEF-mediated translocation to mitochondria, thus triggering mitophagy and apoptosis.
Funder
Deutsche Forschungsgemeinschaft
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献