The Exploring Functional Role of Ammonium Transporters of Aspergillus oryzae in Nitrogen Metabolism: Challenges towards Cell Biomass Production

Author:

Chutrakul ChanikulORCID,Panchanawaporn Sarocha,Vorapreeda Tayvich,Jeennor Sukanya,Anantayanon Jutamas,Laoteng KobkulORCID

Abstract

Ammonium is a source of fermentable inorganic nitrogen essential for the growth and development of filamentous fungi. It is involved in several cellular metabolic pathways underlying nitrogen transport and assimilation. Ammonium can be transferred into the cell by an ammonium transporter. This study explored the role of ammonium transporters in nitrogen metabolism and cell biomass production in Aspergillus oryzae strain BCC 7051. Specific sequences encoding ammonium transporters (Amts) in A. oryzae were identified using genomic analysis. Four of the identified ammonium transporter genes, aoamt1-aoamt4, showed similarity in deduced amino acid sequences to the proteins in the ammonium transporter/methylammonium permease (AMT/MEP) family. Transcriptional analysis showed that the expression of aoamt2 and aoamt3 was ammonium-dependent, and was highly upregulated under ammonium-limited conditions. Their functional roles are characterized by genetic perturbations. The gene disruption and overexpression of aoamt3 indicated that the protein encoded by it was a crucial ammonium transporter associated with nitrogen metabolism and was required for filamentous growth. Compared with the wild type, the aoamt3-overexpressing strain showed superior growth performance, high biomass yield, and low glucose consumption. These results shed light on further improvements in the production of potent bioproducts by A. oryzae by manipulating the ammonium uptake capacity and nitrogen metabolism.

Funder

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3