Dynamic Changes in the Gene Expression Patterns and Lipid Profiles in the Developing and Maturing Meibomian Glands

Author:

Butovich Igor A.,Wilkerson AmberORCID

Abstract

Meibomian glands (MGs) and their holocrine secretion—meibum—play crucial roles in the physiology of the eye, providing protection from environmental factors and desiccation, among other functions. Importantly, aging was implicated in the deterioration of the morphology and functions of MGs, and the quantity and quality of meibum they produce, leading to a loss of its protective properties, while the meibum of young individuals and experimental animals provide ample protection to the eye. Currently, the molecular mechanisms of meibum biosynthesis (termed meibogenesis) are not fully understood. To characterize the physiological changes in developing and maturing MGs, we studied the lipidomes and transcriptomes of mouse MGs ranging from newborns to adults. The results revealed a gradual increase in the critical genes of meibogenesis (such as Elovl3, Elovl4, Awat2, and Soat1, among others) that positively correlated with the biosynthesis of their respective lipid products. The MG transcriptomes of young and adult mice were also analyzed using single-cell RNA sequencing. These experiments revealed the existence of multiple unique populations of MG cells (meibocytes, epithelial cells, and others) with specific combinations of genes that encode meibogenesis-related proteins, and identified clusters and subclusters of cells that were tentatively classified as meibocytes at different stages of differentiation/maturation, or their progenitor cells. A hypothesis was formulated that these cells may produce different types of lipids, and contribute differentially to the Meibomian lipidome.

Funder

National Eye Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3