Ligand-Enhanced Negative Images Optimized for Docking Rescoring

Author:

Kurkinen Sami T.ORCID,Lehtonen Jukka V.,Pentikäinen Olli T.ORCID,Postila Pekka A.

Abstract

Despite the pivotal role of molecular docking in modern drug discovery, the default docking scoring functions often fail to recognize active ligands in virtual screening campaigns. Negative image-based rescoring improves docking enrichment by comparing the shape/electrostatic potential (ESP) of the flexible docking poses against the target protein’s inverted cavity volume. By optimizing these negative image-based (NIB) models using a greedy search, the docking rescoring yield can be improved massively and consistently. Here, a fundamental modification is implemented to this shape-focused pharmacophore modelling approach—actual ligand 3D coordinates are incorporated into the NIB models for the optimization. This hybrid approach, labelled as ligand-enhanced brute-force negative image-based optimization (LBR-NiB), takes the best from both worlds, i.e., the all-roundedness of the NIB models and the difficult to emulate atomic arrangements of actual protein-bound small-molecule ligands. Thorough benchmarking, focused on proinflammatory targets, shows that the LBR-NiB routinely improves the docking enrichment over prior iterations of the R-NiB methodology. This boost can be massive, if the added ligand information provides truly essential binding information that was lacking or completely missing from the cavity-based NIB model. On a practical level, the results indicate that the LBR-NiB typically works well when the added ligand 3D data originates from a high-quality source, such as X-ray crystallography, and, yet, the NIB model compositions can also sometimes be improved by fusing into them, for example, with flexibly docked solvent molecules. In short, the study demonstrates that the protein-bound ligands can be used to improve the shape/ESP features of the negative images for effective docking rescoring use in virtual screening.

Funder

Academy of Finland

Novo Nordisk Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3