Author:
Du Yu,Zhong Ruofei,Li Qingyang,Zhang Furao
Abstract
In the application of change detection satellite remote sensing images, synthetic aperture radar (SAR) images have become a more important data source. This paper proposes a new end-to-end SAR image change network architecture—TransUNet++SAR—that combines Transformer with UNet++. First, the convolutional neural network (CNN) was used to obtain the feature maps of the single time SAR images layer by layer. Tokenized image patches were encoded to extract rich global context information. Using improved Transformer for effective modeling of global semantic relations can generate rich contextual feature representations. Then, we used the decoder to upsample the encoded features, connected the encoded multi-scale features with the high-level features by sequential connection to learn the local-global semantic features, recovered the full spatial resolution of the feature map, and achieved accurate localization. In the UNet++ structure, the bitemporal SAR images are composed of two single networks, which have shared weights to learn the features of the single temporal image layer by layer to avoid the influence of SAR image noise and pseudo-change on the deep learning process. The experiment results show that the experimental effect of TransUNet++SAR on the Beijing, Guangzhou, and Qingdao datasets were significantly better than other deep learning SAR image change detection algorithms. At the same time, compared with other Transformer related change detection algorithms, the description of the changed area edge was more accurate. In the dataset experiments, the model had higher indices than the other models, especially the Beijing building change datasets, where the IOU was 9.79% higher and F1-score was 4.38% higher.
Funder
National Key Technologies Research and Development Program of China
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献