Image Texture as Quality Indicator for Optical DEM Generation: Geomorphic Applications in the Arid Central Andes

Author:

Purinton BenjaminORCID,Mueting ArianeORCID,Bookhagen BodoORCID

Abstract

The generation of Digital Elevation Models (DEMs) through stereogrammetry of optical satellite images has gained great popularity across various disciplines. For the analysis of these DEMs, it is important to understand the influence of the input data and different processing steps and parameters employed during stereo correlation. Here, we explore the effects that image texture, as well as the use of different matching algorithms (Block Matching (BM) and More Global Matching (MGM)), can have on optical DEMs derived from the flexible, open-source Ames Stereo Pipeline. Our analysis relies on a ∼2700 km2 clip of a SPOT6 tristereo scene covering the hyperarid, vegetation-free Pocitos Basin and adjacent mountain ranges in the northwestern Argentine Andes. A large, perfectly flat salt pan (paleolake bed) that covers the center of this basin is characterized by strong contrasts in image texture, providing a unique opportunity to quantitatively study the relationship between image texture and DEM quality unaffected by topography. Our findings suggest that higher image texture, measured by panchromatic variance, leads to lower DEM uncertainty. This improvement continues up to ∼103 panchromatic variance, above which further improvements in DEM quality are independent of local image texture but instead may have sensor or geometric origins. Based on this behavior, we propose that image texture may serve as an important proxy of DEM quality prior to stereo correlation and can help to set adequate processing parameters. With respect to matching algorithms, we observe that MGM improves matching in low-texture areas and overall generates a smoother surface that still preserves complex, narrow (i.e., ridge and valley) features. Based on this sharper representation of the landscape, we conclude that MGM should be preferred for geomorphic applications relying on stereo-derived DEMs. However, we note that the correlation kernel selected for stereo-matching must be carefully chosen depending on local image texture, whereby larger kernels generate more accurate matches (less artifacts) at the cost of smoothing results. Overall, our analysis suggests a path forward for the processing and fusion of overlapping satellite images with suitable view-angle differences to improve final DEMs.

Funder

ESA Third Party Mission project

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3