Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape

Author:

Dahhani Sara,Raji Mohamed,Hakdaoui Mustapha,Lhissou RachidORCID

Abstract

This paper shows the efficiency of machine learning for improving land use/cover classification from synthetic aperture radar (SAR) satellite imagery as a tool that can be used in some sub-Saharan countries that experience frequent clouds. Indeed, we aimed to map the land use and land cover, especially in agricultural areas, using SAR C-band Sentinel-1 (S-1) time-series data over our study area, located in the Kaffrine region of Senegal. We assessed the performance and the processing time of three machine-learning classifiers applied on two inputs. In fact, we applied the random forest (RF), K-D tree K-nearest neighbor (KDtKNN), and maximum likelihood (MLL) classifiers using two separate inputs, namely a set of monthly S-1 time-series data acquired during 2020 and the principal components (PCs) of the time-series dataset. In addition, the RF and KDtKNN classifiers were processed using different tree numbers for RF (10, 15, 50, and 100) and different neighbor numbers for KDtKNN (5, 10, and 15). The retrieved land cover classes included water, shrubs and scrubs, trees, bare soil, built-up areas, and cropland. The RF classification using the S-1 time-series data gave the best performance in terms of accuracy (overall accuracy = 0.84, kappa = 0.73) with 50 trees. However, the processing time was relatively slower compared to KDtKNN, which also gave a good accuracy (overall accuracy = 0.82, kappa = 0.68). Our results were compared to the FROM-GLC, ESRI, and ESA world cover maps and showed significant improvements in some land use and land cover classes.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. FAO (2017). The Future of Food and Agriculture: Trends and Challenges, Food and Agriculture Organization of the United Nations.

2. Global Croplands and their Importance for Water and Food Security in the Twenty-first Century: Towards an Ever Green Revolution That Combines a Second Green Revolution with a Blue Revolution;Thenkabail;Remote Sens.,2010

3. A comparison of global agricultural monitoring systems and current gaps;Fritz;Agric. Syst.,2019

4. Primitives as building blocks for constructing land cover maps;Saah;Int. J. Appl. Earth Obs. Geoinf.,2020

5. Land cover mapping of the Mekong Delta to support natural resource management with multi-temporal Sentinel-1A synthetic aperture radar imagery;Ngo;Remote Sens. Appl. Soc. Environ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3