An Empirical Bayesian Approach to Quantify Multi-Scale Spatial Structural Diversity in Remote Sensing Data

Author:

Schuh Leila A.ORCID,Santos Maria J.ORCID,Schaepman Michael E.ORCID,Furrer ReinhardORCID

Abstract

Landscape structure is as much a driver as a product of environmental and biological interactions and it manifests as scale-specific, but also as multi-scale patterns. Multi-scale structure affects processes on smaller and larger scales and its detection requires information from different scales to be combined. Herein, we propose a novel method to quantify multi-scale spatial structural diversity in continuous remote sensing data. We combined information from different extents with an empirical Bayesian model and we applied a new entropy metric and a value co-occurrence approach to capture heterogeneity. We tested this method on Normalized Difference Vegetation Index data in northern Eurasia and on simulated data and we also tested the effect of coarser pixel resolution. We find that multi-scale structural diversity can reveal itself as patches and linear landscape features, which persist or become apparent across spatial scales. Multi-scale line features reveal the transition zones between spatial regimes and multi-scale patches reveal those areas within transition zones where values are most different from each other. Additionally, spatial regimes themselves can be distinguished. We also find the choice of scale need not be informed by typical length-scales, which makes the method easy to implement. The proposed multi-scale approach can be applied to other contexts, following the roadmap we pave out in this study and using the tools available in the accompanying R package StrucDiv.

Funder

University Research Priority Program on Global Change and Biodiversity of the University of Zurich

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3