Abstract
Convolutional neural networks (CNNs) perform well in tasks of segmenting buildings from remote sensing images. However, the intraclass heterogeneity of buildings is high in images, while the interclass homogeneity between buildings and other nonbuilding objects is low. This leads to an inaccurate distinction between buildings and complex backgrounds. To overcome this challenge, we propose an Attentional Feature Learning Network (AFL-Net) that can accurately extract buildings from remote sensing images. We designed an attentional multiscale feature fusion (AMFF) module and a shape feature refinement (SFR) module to improve building recognition accuracy in complex environments. The AMFF module adaptively adjusts the weights of multi-scale features through the attention mechanism, which enhances the global perception and ensures the integrity of building segmentation results. The SFR module captures the shape features of the buildings, which enhances the network capability for identifying the area between building edges and surrounding nonbuilding objects and reduces the over-segmentation of buildings. An ablation study was conducted with both qualitative and quantitative analyses, verifying the effectiveness of the AMFF and SFR modules. The proposed AFL-Net achieved 91.37, 82.10, 73.27, and 79.81% intersection over union (IoU) values on the WHU Building Aerial Imagery, Inria Aerial Image Labeling, Massachusetts Buildings, and Building Instances of Typical Cities in China datasets, respectively. Thus, the AFL-Net offers the prospect of application for successful extraction of buildings from remote sensing images.
Funder
Natural Science Foundation for Distinguished Young Scholars of Henan Province
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献