An Analytical Method for Elastic Modulus of the Sandwich BCC Lattice Structure Based on Assumption of Linear Distribution

Author:

Shang Jinqi1,Wang Kangkang2,Yan Dongyang2,Liu Fengrui1,Wang Linjuan1,Zhao Libin34

Affiliation:

1. School of Astronautics, Beihang University, Beijing 100191, China

2. Beijing Institute of Aerospace Systems Engineering, Beijing 100076, China

3. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China

4. Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, Hebei University of Technology, Tianjin 300401, China

Abstract

An analytical method to predict the elastic modulus of the sandwich body-centered cubic (BCC) lattice structure is presented on the basis of the assumption of a linearly changing elastic modulus. In the constrained region, the maximum of elastic modulus used the elastic moduli of the BCC lattice element with plate constraints and is calculated with Timoshenko beam theory, the minimum used without plate constraints. In the rest of the constrained region, a linear function along the thickness direction is proposed to calculate elastic modulus. The elastic modulus of the unconstrained region is constant and it is the same as the minimum of the constrained region. The elastic modulus of the whole sandwich BCC lattice structure can be calculated theoretically with the elastic modulus of the constrained and unconstrained regions and a single-layer slice integration method. Six kinds of sandwich BCC lattice structures with different geometric parameters are designed and made by resin 3D printing technology, and the elastic moduli are measured. By comparing the predictions of the elastic modulus using the proposed analytical method and existing method with experimental results, the errors between the results of the existing method and the experimental results varied from 10.3% to 24.7%, and the errors between the results of the proposed method and the experimental results varied from 1.6% to 7.4%, proving that the proposed method is more accurate than the existing methods.

Funder

National Natural Science Foundation of China

Project of High-Level Talents Introduction of Hebei Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and mechanical performance analysis of T-BCC lattice structures;Journal of Materials Research and Technology;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3