Effect of Annealing Temperature on Electrochemical Properties of Zr56Cu19Ni11Al9Nb5 in PBS Solution

Author:

Zhang Zhiying12,Zhong Xinwei1,Teng Xiujin1,Huang Yanshu1,Han Han1,Chen Tao3,Zhang Qinyi12,Yang Xiao1,Gong Yanlong1

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Yang Jiang Alloy Laboratory, Yangjiang 529568, China

3. Xiangyang City Liqiang Mechanics Limited Company, Xiangyang 441799, China

Abstract

The electrochemical properties of as-cast Zr56Cu19Ni11Al9Nb5 metallic glass and samples annealed at different temperatures were investigated using potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) in phosphate buffer saline (PBS) solution. It was shown that passivation occurred for the as-cast sample and the samples annealed at 623–823 K, indicating good corrosion resistance. At higher annealing temperature, the corrosion resistance first increased, and then decreased. The sample annealed at 823 K exhibited the best corrosion resistance, with high spontaneous corrosion potential Ecorr at −0.045 VSCE, small corrosion current density icorr at 1.549 × 10−5 A·cm−2, high pitting potential Epit at 0.165 VSCE, the largest arc radius, and the largest sum of Rf and Rct at 5909 Ω·cm2. For the sample annealed at 923 K, passivation did not occur, with low Ecorr at −0.075 VSCE, large icorr at 1.879 × 10−5 A·cm−2, the smallest arc radius, and the smallest sum of Rf and Rct at 2173 Ω·cm2, which suggested the worst corrosion resistance. Proper annealing temperature led to improved corrosion resistance due to structural relaxation and better stability of the passivation film, however, if the annealing temperature was too high, the corrosion resistance deteriorated due to the chemical inhomogeneity between the crystals and the amorphous matrix. Optical microscopy and scanning electron microscopy (SEM) examinations indicated that localized corrosion occurred. Results of energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) illustrated that the main corrosion products were ZrO2, CuO, Cu2O, Ni(OH)2, Al2O3, and Nb2O5.

Funder

National Natural Science Foundation of China

Start-Up Research Foundation of Wuhan University of Technology

National Innovation and Entrepreneurship Training Program for College Students

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3