Effect of the Molecular Weight of Carboxymethyl Cellulose on the Flotation of Chlorite

Author:

Chen Yanfei1,Chen Yuanlin1,Zhang Lei2

Affiliation:

1. School of Metallurgy and Environment, Central South University, Changsha 410083, China

2. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

Abstract

The present study aimed to investigate the influence mechanism of carboxymethyl cellulose (CMC) on the flotation of fine chlorite. To this end, a series of flotation tests, sedimentation tests, and microscope analyses were conducted. Flotation tests revealed an inverse relationship between particle size and the recovery of chlorite, indicating that finer particles exhibited higher recovery rates. Moreover, it was observed that the recovery of fine chlorite was significantly associated with the water recovery (proportion of water entering the floated product to the weight of water in the initial flotation suspension) and a variety of frother types. Based on these findings, it can be inferred that froth entrainment may constitute a crucial component of the recovery mechanism underlying fine chlorite. Thus, reducing froth entrainment (the phenomenon of hydrophilic minerals entering floated products through foam water) is the key to depress chlorite flotation. Flotation tests indicate that fine chlorite recovered into froth products can be depressed effectively by CMC with a high molecular weight. The results of sedimentation tests and microscope analyses in the presence of CMC prove that CMC with a high molecular weight generates flocculation on fine chlorite particles while that with a low molecular weight does not. It is suggested that the depression of chlorite flotation may be attributed to the reduction in the entrainment resulting from the flocculation induced by CMC.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3