Affiliation:
1. School of Metallurgy and Environment, Central South University, Changsha 410083, China
2. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Abstract
The present study aimed to investigate the influence mechanism of carboxymethyl cellulose (CMC) on the flotation of fine chlorite. To this end, a series of flotation tests, sedimentation tests, and microscope analyses were conducted. Flotation tests revealed an inverse relationship between particle size and the recovery of chlorite, indicating that finer particles exhibited higher recovery rates. Moreover, it was observed that the recovery of fine chlorite was significantly associated with the water recovery (proportion of water entering the floated product to the weight of water in the initial flotation suspension) and a variety of frother types. Based on these findings, it can be inferred that froth entrainment may constitute a crucial component of the recovery mechanism underlying fine chlorite. Thus, reducing froth entrainment (the phenomenon of hydrophilic minerals entering floated products through foam water) is the key to depress chlorite flotation. Flotation tests indicate that fine chlorite recovered into froth products can be depressed effectively by CMC with a high molecular weight. The results of sedimentation tests and microscope analyses in the presence of CMC prove that CMC with a high molecular weight generates flocculation on fine chlorite particles while that with a low molecular weight does not. It is suggested that the depression of chlorite flotation may be attributed to the reduction in the entrainment resulting from the flocculation induced by CMC.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献