Study on Effect of Nano-CaCO3 on Properties of Phosphorus Building Gypsum

Author:

Zhang Yi1ORCID,Tao Zhong12,Wu Lei1ORCID,Zhang Zhiqi1,Zhao Zhiman13

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnan Earthquake Engineering Research Institute, Kunming 650500, China

3. Yunnan Ningchuang Environmental Technology Co., Ltd., Anning 650300, China

Abstract

Phosphogypsum is an industrial by-product from the wet preparation of phosphoric acid. Phosphorus building gypsum (PBG) can be obtained from phosphogypsum after high-thermal dehydration. Improving the mechanical properties of PBG is of great significance to extending its application range. In this paper, PBG was modified by adding nano-CaCO3. Specifically, this study, conducted on 0.25–2% nano-CaCO3-doped PBG, tested effects on the fluidity, setting time, absolute dry flexural strength, absolute dry compressive strength, water absorption and softening coefficient of PBG, followed by its microscopic analysis with SEM and XRD. The experimental results showed that, with an increase in nano-CaCO3 content, the fluidity and setting time of PBG-based mixes were decreased. When the content was 2%, the fluidity was 120 mm, which was 33% lower than that of the blank group; the initial setting time was 485 s, which was 38% lower than that in the blank group; the final setting time was 1321 s, which was reduced by 29%. Nano-CaCO3 evidently improved the absolute dry flexural strength, absolute dry compressive strength, water absorption and softening coefficient of PBG to a certain extent. When the content was 1%, the strengthening effect reached the optimum, with the absolute dry flexural strength and absolute dry compressive strength being increased to 8.1 MPa and 20.5 MPa, respectively, which were 50% and 24% higher than those of the blank group; when the content was 1.5%, the water absorption was 0.22, which was 33% lower than that of the blank group; when the content approached 0.75%, the softening coefficient reached the peak of 0.63, which was 66% higher than that of the blank group. Doping with nano-CaCO3 could significantly improve the performance of PBG, which provides a new scheme for its modification.

Funder

Key R&D Program of Yunnan Provincial Department of Science and Technology

Industrial High-tech Project of Yunnan Provincial Department of Science and Technology

Analysis and Testing Fund of Kunming University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3