Modeling the Crack Interference in X80 Oil and Gas Pipeline Weld

Author:

Cui Wei12ORCID,Xiao Zhongmin3,Zhang Qiang2,Yang Jie1ORCID,Feng Ziming4

Affiliation:

1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

4. School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China

Abstract

Based on the numerical simulation method of the virtual crack closure technique (VCCT), an interference model was established to investigate the physical problem of two interacting cracks of different sizes in the welding zone of oil and gas pipelines. The obtained results of the current interference problem were compared with those of single crack case. Various crack configurations, such as different crack spacing and different crack sizes, were analyzed. The characteristic quantity fluid pressure load P during the crack propagation process, the peak value of the von Mises stress distribution field of the crack growth path, as well as the difference ∆Bx between the peak value of the magnetic induction intensity component at the crack and the value of the magnetic induction intensity component at its symmetrical position were calculated. The crack interaction scale factors, including γP, γMises, and γΔBx, were compared and analyzed. The numerical modeling results show that when the unequal-length double cracks interfere with each other, the cracks are more likely to propagate toward each other. The tendency of the double-cracks to propagate toward each other gradually weakens as the distance between the crack tips increases and is finally the same as that of single-crack cases. It was also found that the effect of large-sized cracks on small-sized cracks is greater than that of small-sized ones on large-sized ones. The numerical modeling results could be applied for the prediction and analysis of multicrack damage in oil and gas pipeline welds.

Funder

Natural Science Foundation of Heilongjiang province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3