Structure and Performance Optimization of Co Magnetic Thin Films Deposited by Vacuum Evaporation Coating

Author:

Mao Mingheng1,Ke Shaoqiu1,Tang Dingguo2,Sang Xiahan1,He Danqi1

Affiliation:

1. State Key Laboratory of New Materials and Composites Technology, Wuhan University of Technology, Wuhan 430070, China

2. School of Chemistry and Materials Science, Central South University for Nationalities, Wuhan 430074, China

Abstract

Co magnetic films are widely used in high-frequency magnetic recording and vertical magnetic recording due to their high saturation magnetization and magnetocrystalline anisotropy. In this work, ferromagnetic Co magnetic films were prepared on copper substrate by vacuum evaporation combined with heat treatment (H2 atmosphere), to investigate the impact of film thickness and annealing temperature on microstructure and magnetic properties. The results show that with the increase in annealing temperature, the Co thin film physical phase does not change significantly, the crystallinity increases, and the grain size increases, which is consistent with the results obtained from the SEM morphology map of the sample surface, leading to an increase in coercivity. By annealing experiments (atmospheric atmosphere) on Co magnetic films with and without an Al protective layer, as shown by scanning electron microscopy microscopic characterization results, it was verified that the Al layer can protect the inner Co layer from oxidation. As the film thickness increases from 10 to 300 nm, the magnetic properties of Co films change significantly. The saturation magnetization gradually increases from 0.89 to 5.21 emu/g, and the coercivity increases from 124.3 to 363.8 Oe. The remanence ratio of the 10 nm magnetic film is 0.82, which is much higher than the film remanence ratio of 0.46 at 50 nm. This is because when the thickness of the film is between 10 and 50 nm, the magnetic moments partially deviate from the in-plane direction, and the out-of-plane component reduces the film remanence ratio. This study shows that optimizing annealing temperature and film thickness can effectively control the structure and magnetic properties of Co magnetic films, which is of great significance for the development of the magnetic recording field.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3