Affiliation:
1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2. Key Laboratory of Harbor and Marine Structure Durability Technology of the Ministry of Communications, CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China
Abstract
The corrosion behavior of reinforcing steel in the ITT under a submarine environment was investigated. Electrochemical tests were carried out to separately determine the linear polarization curves and the AC impedance spectra of rebars in the ITT scaled-down models subjected to pressurized seawater erosion, from which key parameters were obtained, including the self-corrosion potential (Ecorr), corrosion current density (icorr), polarization resistance (Rp), concrete resistance (Rc), and charge migration resistance (Rct). The results show that in the process of pressurized seawater erosion, the rebars on the seawater side of the ITT models corroded earlier than the rebars on the cavity side, and it is recommended that anti-chloride ion penetration measures be taken on the surface of the seawater side as a priority in the project. The corrosion rate of rebars on the seawater side was significantly higher than that on the cavity side, and the corrosion rate of rebars on the cavity side increased as the erosion time increased. The corrosion rate of rebars in the ITT models was affected by chloride ions to a greater extent than by oxygen. Furthermore, by regression equation, a linear function between Rp obtained from the polarization curves and Rct obtained from the AC impedance spectra was established.
Funder
Basic Research Project of China Communications Construction Co., Ltd.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献