Effects of Mud Content on the Setting Time and Mechanical Properties of Alkali-Activated Slag Mortar

Author:

Li Shuaijun12ORCID,Chen Deyong3,Jia Zhirong1,Li Yilin2,Li Peiqing2ORCID,Yu Bin2

Affiliation:

1. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China

2. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China

3. Shandong Jiuqiang Group Co., Ltd., Zibo 255000, China

Abstract

High mud content in the sand has a negative impact on cement mortar but there is little research on Alkali-activated slag (AAS) mortar. In order to explore the impacts of mud content in the sand on the performance of AAS mortar, this paper used sand that contains silt, clay, and a mixture of silt and clay; tested the setting time of AAS with different mud contents of 0%, 2%, 4%, 6%, 8%, and 10%; and measured the unconfined compressive strength and beam flexural strength of 3 d, 7 d, and 28 d AAS mortar specimens. The microstructure of AAS mortar with different kinds of mud was observed by scanning electron microscope (SEM), the elemental composition of the hydration product was tested by energy dispersive spectroscopy (EDS), and the AAS interaction mechanism with different kinds of mud was analyzed. The main conclusions are: the higher the mud content in the sand, the shorter the initial setting time and the longer the final setting time of AAS, mainly because the mud in the sand affects the hydration process; mud content above 4% causes a rapid decrease in the compressive and flexural strengths of AAS mortar, mainly because the mud affects the hydration process and hinders the bonding of the hydration product with the sand. When there is no mud in the sand, the main hydration product of AAS is dense calcium-alumina-silicate-hydrate (C-A-S-H) gel. When the sand contains silt, the hydration product of AAS is loose C-A-S-H gel. When the sand contains clay, the hydration products of AAS contain C-A-S-H gel and a small amount of sodium-aluminum-silicate-hydrate (N-A-S-H), and needle-like crystals. Loose gel and crystals have a negative effect on the AAS mortar strength.

Funder

the Shandong Provincial Natural Science Foundation

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3