Photodegradation of Rhodamine B and Phenol Using TiO2/SiO2 Composite Nanoparticles: A Comparative Study

Author:

Gatou Maria-Anna1,Fiorentis Evangelos1,Lagopati Nefeli23ORCID,Pavlatou Evangelia A.1ORCID

Affiliation:

1. Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece

2. Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece

3. Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece

Abstract

Organic pollutants found in industrial effluents contribute to significant environmental risks. Degradation of these pollutants, particularly through photocatalysis, is a promising strategy ensuring water purification and supporting wastewater treatment. Thus, photodegradation of rhodamine B and phenol under visible-light irradiation using TiO2/SiO2 composite nanoparticles was within the main scopes of this study. The nanocomposite was synthesized through a wet impregnation method using TiO2 and SiO2 nanopowders previously prepared via a facile sol–gel approach and was fully characterized. The obtained results indicated a pure anatase phase, coupled with increased crystallinity (85.22%) and a relative smaller crystallite size (1.82 nm) in relation to pure TiO2 and SiO2 and an enhanced specific surface area (50 m2/g) and a reduced energy band gap (3.18 eV). Photodegradation of rhodamine B upon visible-light irradiation was studied, showing that the TiO2/SiO2 composite reached total (100%) degradation within 210 min compared to pure TiO2 and SiO2 analogues, which achieved a ≈45% and ≈43% degradation rate, respectively. Similarly, the composite catalyst presented enhanced photocatalytic performance under the same irradiation conditions towards the degradation of phenol, leading to 43.19% degradation within 210 min and verifying the composite catalyst’s selectivity towards degradation of rhodamine B dye as well as its enhanced photocatalytic efficiency towards both organic compounds compared to pure TiO2 and SiO2. Additionally, based on the acquired experimental results, ●O2−, h+ and e− were found to be the major reactive oxygen species involved in rhodamine B’s photocatalytic degradation, while ●OH radicals were pivotal in the photodegradation of phenol under visible irradiation. Finally, after the TiO2/SiO2 composite catalyst was reused five times, it indicated negligible photodegradation efficiency decrease towards both organic compounds.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3