Simple Preparation of Lignin-Based Phenolic Resin Carbon and Its Efficient Adsorption of Congo Red

Author:

Su Wanting1,Li Penghui12ORCID,Wang Mingkang1,Yi Dairenjie1,Jiang Bo1,Wu Wenjuan12ORCID

Affiliation:

1. College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

Abstract

Biomass porous carbon is a low-cost, environmentally friendly material with no secondary pollution and has great potential in the field of dye pollutant adsorption. In this work, we used lignin, a renewable resource abundant in nature, to completely replace phenol and develop a lignin-based phenolic resin carbon (LPFC) adsorbent with high dye removal capacity, high recyclability, and low production cost. The samples were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Then the effects of adsorbent dosage (1 g/L, 2 g/L, 3 g/L, 4 g/L, and 5 g/L), temperature (30 °C, 45 °C, and 60 °C), initial dye concentration (100, 200, 300, 400, 500, 600, 700, and 800 mg/L), and pH (3, 4, 6, 8, 10, and 12) on the adsorption capacity were investigated during the adsorption process. The experimental results showed that the pore structure of LPFC was richer and more graphitized than that of phenolic resin carbon (PFC). The adsorption performance of LPFC on CR was better than that of PFC. The adsorption characteristics of LPFC were investigated from the adsorption isotherm and kinetic perspectives. The Langmuir isothermal adsorption model and the proposed second-order kinetic model were able to fit the adsorption data better. The adsorption process preferred monolayer adsorption, and the proposed second-order model predicted a maximum adsorption capacity of 425.53 mg/g. After five cycles, the removal of CR by LPFC only decreased from 92.1 to 79.2%. It can be seen that LPFC adsorbents have great potential in the field of wastewater treatment and can effectively realize the high-value application of lignin.

Funder

National Natural Science Foundation of China

Nanjing Forestry University Undergraduate Innovation Training Program Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference76 articles.

1. Botkin, D.B., and Keller, E.A. (2007). Environmental Science: Earth as a Living Planet, Willey.

2. Thermodynamic and kinetic studies of methylene blue degradation using reactive adsorption and its comparison with adsorption;Sharma;J. Chem. Eng. Data,2017

3. Dixit, U. (2021). Dyes and Pigments, IntechOpen. Chapter 8.

4. Metal organic frameworks as adsorbents for dye adsorption: Overview, prospects and future challenges;Adeyemo;Toxicol. Environ. Chem.,2012

5. Effect of textile and dye industry polluted ground water on growth and yield of sunflower;Sellamuthu;Res. Crops,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3