Alkaline Reduced Water Attenuates Oxidative Stress-Induced Mitochondrial Dysfunction and Innate Immune Response Triggered by Intestinal Epithelial Dysfunction

Author:

Antonio Jayson M.ORCID,Fadriquela AilynORCID,Jeong Yun Ju,Kim Cheol-SuORCID,Kim Soo-Ki

Abstract

Redox imbalance in intestinal epithelial cells is critical in the early phases of intestinal injury. Dysfunction of the intestinal barrier can result in immunological imbalance and inflammation, thus leading to intestinal syndromes and associated illnesses. Several antioxidants have been discovered to be beneficial in resolving intestinal barrier dysfunction. Of these antioxidants, the effects of alkaline reduced water (ARW) in oxidative stress of intestinal epithelial cells and its immunokine modulation in vitro is unknown. In this study, we utilized ARW-enriched media to investigate its cytoprotective effect against H2O2-induced oxidative stress in DLD1 cells. We found that ARW rescued DLD1 from oxidative stress by diluting the influence of H2O2 on oxidative stress-activated MAPK signaling and mitochondrial dysfunction. Further, intestinal oxidative stress significantly affects immunokine profiles of Raw 264.7 cells (IL-6, IL-10, MCP, TNF-a, RANTES), which can be reversed by ARW. Collectively, ARW shields intestinal epithelial cells from oxidative stress, reducing the immunological mayhem caused by barrier failure.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3