The Radical Scavenger NZ-419 Suppresses Intestinal Polyp Development in Apc-Mutant Mice

Author:

Kurokawa Yurie,Fujii Gen,Tomono Susumu,Miyamoto Shingo,Hamoya Takahiro,Takahashi Maiko,Narita Takumi,Komiya Masami,Kobayashi MasakiORCID,Higami YoshikazuORCID,Mutoh Michihiro

Abstract

Colorectal cancer is the fourth leading cause of cancer death worldwide, and it is important to establish effective methods for preventing colorectal cancer. One effective prevention strategy could be the use of antioxidants. However, the role of the direct antioxidative function of antioxidants against carcinogenesis has not been clarified. Thus, we aimed to determine whether the direct removal of reactive oxygen species by a hydroxyl radical scavenger, NZ-419, could inhibit colorectal carcinogenesis. NZ-419 is a creatinine metabolite that has been shown to be safe and to inhibit the progression of chronic kidney disease in rats, and it is now under clinical development. In the present study, we demonstrated that NZ-419 eliminated reactive oxygen species production in HCT116 cells after H2O2 stimulation and suppressed H2O2-induced Nrf2 promoter transcriptional activity. The administration of 500 ppm NZ-419 to Apc-mutant Min mice for 8 weeks resulted in a decrease in the number of polyps in the middle segment of the small intestine to 62.4% of the value in the untreated control (p < 0.05 vs. control group). As expected, NZ-419 treatment affected the levels of reactive carbonyl species, which are oxidative stress markers in the serum of Min mice. Suppression of the mRNA levels of the proliferation-associated factor c-Myc was observed in intestinal polyps of Min mice after NZ-419 treatment, with a weak suppression of epithelial cell proliferation assessed by proliferation cell nuclear antigen (PCNA) staining in the intestinal polyps. This study demonstrated that NZ-419 suppress the development of intestinal polyps in Min mice, suggesting the utility of radical scavenger/antioxidants as a cancer chemopreventive agent.

Funder

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3